In the United States, the National Science Foundation funded what it called the SEANet Project. The goal was to enable broadband wireless communication from any point on or in the oceans to anywhere else on the planet or in space. The Internet of Underwater Things is being designed to enable all the same communication capabilities that are being provided on land, including “real-time video streaming from underwater.”
- sensors and antennas (“nodes”) on the ocean floor
- nodes at different depths
- surface nodes
- relay antennas at different depths to transmit data vertically from the ocean floor to the ocean surface, and horizontally between nodes
- Autonomous Underwater Vehicles (AUVs)
- Autonomous Surface Vehicles (ASVs)
- underwater robots
- wireless surface buoys
- smart boats and ships
- smart submarines
- smart shores
Communication being more difficult to accomplish underwater than through the air, and more subject to interference, several different types of communication media are being used in the oceans to send data at different speeds and over different distances. Acoustic waves, radio waves, lasers, LED light, and magnetic induction are all being used to flood the oceans with data. An underwater GPS system is being developed. Most of these media work only for short- to medium-range communication. Long-range communication relies on acoustic waves, and is similar to the technology used in ocean sonar.
These technologies are already being marketed commercially and installed in the world’s oceans today. At the 2022 Oceanology International conference, which will be held in London from March 15 to 17, dozens of these companies will be exhibiting their products.